Design an AI Agent Flow System for Mobile Development
Published:
๐ฏ Problem Statement
Design an AI agent orchestration system for a mid-scale mobile development company (50-200 engineers) that:
- Integrates multiple external AI services (Cursor, Claude API, OpenAI API, testing AI tools)
- Automates development workflows (code review, testing, documentation, architecture analysis)
- Works with existing iOS/Android codebases
- Doesnโt require building custom UIsโuses existing tools and APIs
- Handles failures gracefully and provides fallback mechanisms
- Scales to support multiple teams and projects
Constraints:
- Team Size: 50-200 mobile engineers
- Codebase: Multiple iOS/Android apps (5-10 projects)
- Budget: Mid-scale (canโt build custom AI infrastructure)
- Requirements: Must integrate with existing CI/CD, code review tools (GitHub/GitLab)
- Latency: Agent responses should complete within 2-5 minutes for most tasks
- Cost: Optimize API costs across multiple providers
Key Challenge: Orchestrate different AI services from different companies (Anthropic, OpenAI, Cursor, testing AI vendors) into cohesive workflows without building internal infrastructure.
๐ STEP 1: High-Level Architecture
In the interview, start by drawing this on the whiteboard:
Cursor IDE"]; GITHUB["GitHub PR
Code Review"]; CICD["CI/CD
Automation"]; DEVELOPER --> GITHUB; GITHUB --> CICD; end; subgraph ORCH["๐ค AI Agent Orchestration Layer"]; COORD["Agent Flow Coordinator
Workflow, Routing, Error Handling"]; CODE_AGENT["Code Review Agent"]; TEST_AGENT["Test Generation Agent"]; ARCH_AGENT["Architecture Agent"]; COORD --> CODE_AGENT; COORD --> TEST_AGENT; COORD --> ARCH_AGENT; end; subgraph AI_SERVICES["๐ AI Service Integration Layer"]; CLAUDE["Claude API"]; OPENAI["OpenAI API"]; CURSOR["Cursor API"]; TEST_AI["Testing AI"]; DOC_AI["Doc Gen AI"]; SEC_AI["Security AI"]; GATEWAY["API Gateway
Rate Limiter, Cost Tracker"]; CLAUDE --> GATEWAY; OPENAI --> GATEWAY; CURSOR --> GATEWAY; TEST_AI --> GATEWAY; DOC_AI --> GATEWAY; SEC_AI --> GATEWAY; end; subgraph OUTPUT["๐ค Result Storage & Notification"]; GITHUB_COMMENT["GitHub Comments"]; SLACK["Slack Notifications"]; DB["Database Results"]; end; CICD --> COORD; CODE_AGENT --> GATEWAY; TEST_AGENT --> GATEWAY; ARCH_AGENT --> GATEWAY; GATEWAY --> GITHUB_COMMENT; GATEWAY --> SLACK; GATEWAY --> DB; style DEV fill:#fff9e6; style ORCH fill:#e6f3ff; style AI_SERVICES fill:#ffe6f3; style OUTPUT fill:#e6ffe6;
๐ฌ What to say while drawing:
โIโll design a three-layer architecture. At the top, we have the development workflow (developers using Cursor, GitHub PRs, CI/CD). The middle layer is our AI agent orchestration system that coordinates different specialized agents. The bottom layer integrates with multiple external AI services via APIs. Results flow back to GitHub comments, Slack notifications, and our database for tracking.โ
๐ Key Architecture Decisions
1. Agent-Based Architecture vs Monolithic Service
Choice: Agent-Based Architecture
Why:
- โ Modularity: Each agent handles a specific task (code review, testing, docs)
- โ Scalability: Can add new agents without affecting existing ones
- โ Fault Isolation: If one AI service fails, others continue working
- โ Cost Optimization: Route tasks to most cost-effective service
- โ Flexibility: Easy to swap AI providers (Claude โ OpenAI)
Structure:
// Agent Protocol
protocol AIAgent {
var name: String { get }
var supportedTasks: [TaskType] { get }
var aiService: AIServiceProvider { get }
func execute(task: AgentTask) async throws -> AgentResult
func estimateCost(task: AgentTask) -> CostEstimate
}
// Example Agents
class CodeReviewAgent: AIAgent { }
class TestGenerationAgent: AIAgent { }
class DocumentationAgent: AIAgent { }
class ArchitectureReviewAgent: AIAgent { }
2. Workflow Definition: YAML vs Code vs Database
Choice: YAML Configuration Files
Why:
- โ Version Control: Workflows tracked in git
- โ Easy to Modify: Non-engineers can update workflows
- โ No Deployment: Changes take effect immediately
- โ Readable: Clear workflow definitions
Example Workflow:
# workflows/code-review.yml
name: Automated Code Review
trigger:
event: pull_request
conditions:
- files_changed: ["*.swift", "*.m", "*.h"]
- lines_changed: "> 100"
agents:
- name: code-review-agent
type: CodeReviewAgent
service: claude-api # or openai-api
config:
model: claude-3-opus
max_tokens: 4000
temperature: 0.3
tasks:
- analyze_code_quality
- check_security_issues
- suggest_improvements
- verify_best_practices
- name: test-coverage-agent
type: TestGenerationAgent
service: openai-api
config:
model: gpt-4-turbo
focus: unit_tests
tasks:
- generate_missing_tests
- suggest_test_cases
fallback:
- if: claude-api.fails
use: openai-api
- if: openai-api.fails
notify: slack-channel
continue: false
output:
- github_comment: true
- slack_notification: true
- database_log: true
3. API Integration Strategy: Direct vs Proxy
Choice: API Gateway with Proxy Layer
Why:
- โ Centralized Rate Limiting: Prevent hitting API limits
- โ Cost Tracking: Monitor usage across all services
- โ Fallback Logic: Automatic failover between providers
- โ Request Optimization: Batch requests, cache responses
- โ Security: API keys stored securely, not in client code
Implementation:
class AIServiceGateway {
private let rateLimiter: RateLimiter
private let costTracker: CostTracker
private let fallbackManager: FallbackManager
func callService(
_ service: AIService,
request: AIRequest
) async throws -> AIResponse {
// Check rate limits
try await rateLimiter.checkLimit(for: service)
// Estimate cost
let cost = costTracker.estimate(request, service: service)
guard costTracker.canAfford(cost) else {
throw AIServiceError.budgetExceeded
}
// Make request with retry logic
do {
let response = try await service.execute(request)
costTracker.record(cost, service: service)
return response
} catch {
// Fallback to alternative service
return try await fallbackManager.fallback(
from: service,
request: request
)
}
}
}
4. Task Orchestration: Sequential vs Parallel
Choice: Hybrid Approach (Parallel where possible, Sequential when dependencies exist)
Why:
- โ Speed: Parallel execution for independent tasks
- โ Dependencies: Sequential for tasks that depend on previous results
- โ Cost Efficiency: Run expensive tasks only when needed
Example:
class AgentFlowCoordinator {
func executeWorkflow(_ workflow: Workflow) async throws {
// Phase 1: Parallel execution (independent tasks)
async let codeReview = codeReviewAgent.execute(task)
async let securityScan = securityAgent.execute(task)
async let lintCheck = lintAgent.execute(task)
let phase1Results = try await [
codeReview,
securityScan,
lintCheck
]
// Phase 2: Sequential (depends on Phase 1)
let testGeneration = try await testAgent.execute(
task: task,
context: phase1Results
)
// Phase 3: Aggregate and report
let report = aggregateResults(phase1Results + [testGeneration])
try await reportToGitHub(report)
}
}
๐๏ธ Detailed Component Design
Component 1: Agent Flow Coordinator
Responsibilities:
- Parse workflow definitions (YAML)
- Route tasks to appropriate agents
- Manage task dependencies
- Handle errors and retries
- Aggregate results
Implementation:
class AgentFlowCoordinator {
private let workflowParser: WorkflowParser
private let agentRegistry: AgentRegistry
private let taskQueue: TaskQueue
func processWorkflow(
trigger: WorkflowTrigger,
context: WorkflowContext
) async throws {
// Load workflow definition
let workflow = try workflowParser.parse(
trigger: trigger
)
// Validate workflow
try validateWorkflow(workflow)
// Execute workflow phases
for phase in workflow.phases {
let results = try await executePhase(
phase,
context: context
)
context.addResults(results)
}
// Generate final report
let report = generateReport(
workflow: workflow,
results: context.results
)
// Deliver results
try await deliverResults(report, to: workflow.output)
}
private func executePhase(
_ phase: WorkflowPhase,
context: WorkflowContext
) async throws -> [AgentResult] {
if phase.parallel {
// Execute agents in parallel
return try await withThrowingTaskGroup(
of: AgentResult.self
) { group in
for agentTask in phase.tasks {
group.addTask {
try await self.executeAgentTask(
agentTask,
context: context
)
}
}
return try await group.reduce([], +)
}
} else {
// Execute sequentially
var results: [AgentResult] = []
for agentTask in phase.tasks {
let result = try await executeAgentTask(
agentTask,
context: context
)
results.append(result)
context.addResult(result)
}
return results
}
}
}
Component 2: AI Service Integration Layer
Responsibilities:
- Abstract different AI service APIs
- Handle authentication
- Implement rate limiting
- Manage costs
- Provide fallback mechanisms
Service Abstraction:
protocol AIServiceProvider {
var name: String { get }
var supportedModels: [String] { get }
var costPerToken: [String: Double] { get }
var rateLimit: RateLimit { get }
func generate(
prompt: String,
model: String,
parameters: GenerationParameters
) async throws -> AIResponse
func estimateCost(
prompt: String,
model: String
) -> CostEstimate
}
// Claude API Implementation
class ClaudeService: AIServiceProvider {
let name = "Claude API"
let supportedModels = ["claude-3-opus", "claude-3-sonnet", "claude-3-haiku"]
private let apiKey: String
private let httpClient: HTTPClient
func generate(
prompt: String,
model: String,
parameters: GenerationParameters
) async throws -> AIResponse {
let request = ClaudeRequest(
model: model,
messages: [.user(prompt)],
maxTokens: parameters.maxTokens,
temperature: parameters.temperature
)
let response = try await httpClient.post(
"https://api.anthropic.com/v1/messages",
body: request,
headers: [
"x-api-key": apiKey,
"anthropic-version": "2023-06-01"
]
)
return ClaudeResponseAdapter.adapt(response)
}
}
// OpenAI API Implementation
class OpenAIService: AIServiceProvider {
let name = "OpenAI API"
let supportedModels = ["gpt-4-turbo", "gpt-4", "gpt-3.5-turbo"]
// Similar implementation...
}
// Cursor API Integration (if available)
class CursorService: AIServiceProvider {
// Cursor-specific integration
// May use their API or CLI tools
}
Component 3: Specialized Agents
Code Review Agent
class CodeReviewAgent: AIAgent {
let name = "CodeReviewAgent"
let supportedTasks: [TaskType] = [.codeReview, .securityScan]
private let aiService: AIServiceProvider
private let codeAnalyzer: CodeAnalyzer
func execute(task: AgentTask) async throws -> AgentResult {
// Extract code from PR
let codeChanges = try extractCodeChanges(from: task.context)
// Build review prompt
let prompt = buildReviewPrompt(
code: codeChanges,
context: task.context
)
// Call AI service
let aiResponse = try await aiService.generate(
prompt: prompt,
model: "claude-3-opus",
parameters: .init(
maxTokens: 4000,
temperature: 0.3
)
)
// Parse and structure response
let review = try parseReviewResponse(aiResponse)
// Add code analysis insights
let analysis = codeAnalyzer.analyze(codeChanges)
review.addAnalysis(analysis)
return AgentResult(
agent: self,
findings: review.findings,
suggestions: review.suggestions,
confidence: review.confidence
)
}
private func buildReviewPrompt(
code: CodeChanges,
context: TaskContext
) -> String {
return """
You are an expert iOS engineer reviewing a pull request.
Code Changes:
\(code.diff)
Context:
- Files changed: \(code.files)
- Lines changed: \(code.linesAdded) added, \(code.linesRemoved) removed
- Related files: \(context.relatedFiles)
Please review for:
1. Code quality and best practices
2. Potential bugs or edge cases
3. Security vulnerabilities
4. Performance issues
5. Test coverage
Provide specific, actionable feedback.
"""
}
}
Test Generation Agent
class TestGenerationAgent: AIAgent {
let name = "TestGenerationAgent"
let supportedTasks: [TaskType] = [.testGeneration, .testReview]
private let aiService: AIServiceProvider
func execute(task: AgentTask) async throws -> AgentResult {
let code = try extractCode(from: task.context)
let existingTests = try findExistingTests(for: code)
let prompt = """
Generate comprehensive unit tests for this Swift code:
\(code.source)
Existing tests:
\(existingTests)
Focus on:
1. Happy path scenarios
2. Edge cases and error handling
3. Boundary conditions
4. Mocking dependencies
Use XCTest framework.
"""
let response = try await aiService.generate(
prompt: prompt,
model: "gpt-4-turbo",
parameters: .init(maxTokens: 2000)
)
let tests = try parseTestCode(response)
return AgentResult(
agent: self,
generatedTests: tests,
coverageEstimate: calculateCoverage(tests, for: code)
)
}
}
Architecture Review Agent
class ArchitectureReviewAgent: AIAgent {
let name = "ArchitectureReviewAgent"
let supportedTasks: [TaskType] = [.architectureReview, .designPattern]
func execute(task: AgentTask) async throws -> AgentResult {
let codebaseStructure = try analyzeCodebaseStructure(
from: task.context
)
let prompt = """
Review the architecture of this iOS codebase:
Structure:
\(codebaseStructure)
Check for:
1. Separation of concerns (MVVM/MVC/VIPER)
2. Dependency injection patterns
3. Testability
4. Scalability concerns
5. Code organization
Provide architectural recommendations.
"""
// Use Claude for complex architectural analysis
let response = try await aiService.generate(
prompt: prompt,
model: "claude-3-opus",
parameters: .init(maxTokens: 3000)
)
return AgentResult(
agent: self,
architectureIssues: parseArchitectureIssues(response),
recommendations: parseRecommendations(response)
)
}
}
๐ Workflow Examples
Workflow 1: Automated PR Review
Trigger: Pull request opened
Flow:
Coordinator"] COORD --> PARALLEL["Parallel Execution"] PARALLEL --> CODE["Code Review Agent
(Claude API)"] PARALLEL --> SEC["Security Agent
(OpenAI API)"] PARALLEL --> TEST["Test Coverage Agent
(Testing AI)"] PARALLEL --> DOC["Documentation Agent
(Claude API)"] CODE --> AGG["Aggregate Results"] SEC --> AGG TEST --> AGG DOC --> AGG AGG --> OUTPUT["GitHub PR Comment
with Feedback"]
Parallel Execution: All agents run simultaneously
Output: GitHub PR comment with aggregated feedback
# workflows/pr-review.yml
name: PR Code Review
trigger:
event: pull_request.opened
agents:
- code-review-agent
- security-agent
- test-coverage-agent
- documentation-agent
execution: parallel
output:
github_comment: true
format: markdown
Workflow 2: Test Generation Pipeline
Trigger: PR with new features (no tests)
Flow:
(No Tests)"] --> PHASE1["Phase 1: Analysis"] PHASE1 --> ANALYSIS["Code Analysis Agent
Identifies untested code"] ANALYSIS --> PHASE2["Phase 2: Generation"] PHASE2 --> GENERATE["Test Generation Agent
(OpenAI GPT-4)
Generates unit tests"] GENERATE --> PHASE3["Phase 3: Review"] PHASE3 --> REVIEW["Test Review Agent
(Claude)
Reviews generated tests"] REVIEW --> PHASE4["Phase 4: Execution"] PHASE4 --> RUN["Test Runner
Executes tests in CI"] RUN --> OUTPUT["Generated Test Files
+ PR Comment"] style PHASE1 fill:#e1f5ff style PHASE2 fill:#e1f5ff style PHASE3 fill:#e1f5ff style PHASE4 fill:#e1f5ff
Sequential Execution: Each step depends on previous
Output: Generated test files + PR comment
# workflows/test-generation.yml
name: Auto Test Generation
trigger:
event: pull_request
conditions:
- test_coverage: "< 80%"
- files_changed: ["*.swift"]
phases:
- name: analysis
agents:
- code-analysis-agent
parallel: false
- name: generation
agents:
- test-generation-agent
depends_on: [analysis]
- name: review
agents:
- test-review-agent
depends_on: [generation]
- name: execution
agents:
- test-runner
depends_on: [review]
output:
create_files: true
github_comment: true
Workflow 3: Architecture Migration Analysis
Trigger: Manual trigger or large refactor PR
Flow:
or Large Refactor PR"] --> ARCH["Architecture Analysis
Agent (Claude)
Analyzes current architecture"] ARCH --> PLAN["Migration Planning
Agent (OpenAI)
Plans migration strategy"] PLAN --> IMPACT["Impact Analysis
Agent (Claude)
Analyzes impact"] IMPACT --> DOC["Documentation Agent
Generates migration guide"] DOC --> OUTPUT["Architecture Decision
Record (ADR)
+ Migration Plan"] style ARCH fill:#fff4e1 style PLAN fill:#fff4e1 style IMPACT fill:#fff4e1 style DOC fill:#fff4e1
Output: Architecture decision record (ADR) + migration plan
๐ฐ Cost Optimization Strategies
1. Model Selection Based on Task Complexity
class CostOptimizer {
func selectModel(
for task: AgentTask,
budget: Budget
) -> String {
switch task.complexity {
case .simple:
// Use cheaper model (Claude Haiku, GPT-3.5)
return "claude-3-haiku" // $0.25 per 1M tokens
case .medium:
// Use mid-tier model (Claude Sonnet, GPT-4)
return "claude-3-sonnet" // $3 per 1M tokens
case .complex:
// Use best model (Claude Opus, GPT-4 Turbo)
return "claude-3-opus" // $15 per 1M tokens
}
}
}
2. Request Batching
class RequestBatcher {
func batchRequests(
_ requests: [AIRequest],
maxBatchSize: Int = 10
) -> [[AIRequest]] {
// Group similar requests
// Send as single API call when possible
// Reduces API overhead
}
}
3. Response Caching
class ResponseCache {
func cacheKey(for request: AIRequest) -> String {
// Hash of: prompt + model + parameters
return SHA256.hash(request.prompt + request.model)
}
func getCached(
_ request: AIRequest
) -> AIResponse? {
let key = cacheKey(for: request)
return cache[key]
}
}
4. Cost Tracking and Budgets
class CostTracker {
struct Budget {
let daily: Double
let monthly: Double
let perProject: [String: Double]
}
func canAfford(
_ cost: Double,
for project: String
) -> Bool {
// Check daily, monthly, and project budgets
return currentDailySpend + cost <= budget.daily &&
currentMonthlySpend + cost <= budget.monthly &&
projectSpend[project] + cost <= budget.perProject[project]
}
func record(
_ cost: Double,
service: AIServiceProvider,
project: String
) {
// Track spending
// Alert if approaching limits
}
}
๐จ Error Handling & Resilience
1. Fallback Strategy
(Primary)"] PRIMARY -->|Success| SUCCESS["Return Response"] PRIMARY -->|Failure| FALLBACK1["Try OpenAI API
(Fallback 1)"] FALLBACK1 -->|Success| SUCCESS FALLBACK1 -->|Failure| FALLBACK2["Try Alternative Service
(Fallback 2)"] FALLBACK2 -->|Success| SUCCESS FALLBACK2 -->|Failure| ERROR["All Services Failed
Throw Error"] style PRIMARY fill:#90EE90 style FALLBACK1 fill:#FFE4B5 style FALLBACK2 fill:#FFB6C1 style SUCCESS fill:#87CEEB style ERROR fill:#FF6B6B
class FallbackManager {
let fallbackChain: [AIServiceProvider] = [
ClaudeService(), // Primary
OpenAIService(), // Fallback 1
// Could add more
]
func executeWithFallback(
_ request: AIRequest
) async throws -> AIResponse {
var lastError: Error?
for service in fallbackChain {
do {
return try await service.generate(
prompt: request.prompt,
model: request.model,
parameters: request.parameters
)
} catch {
lastError = error
logger.warn("Service \(service.name) failed: \(error)")
continue
}
}
throw AIServiceError.allServicesFailed(lastError!)
}
}
2. Retry Logic
class RetryHandler {
func executeWithRetry<T>(
maxAttempts: Int = 3,
backoff: TimeInterval = 1.0,
operation: () async throws -> T
) async throws -> T {
var lastError: Error?
for attempt in 1...maxAttempts {
do {
return try await operation()
} catch let error as AIServiceError {
lastError = error
if error.isRetryable {
let delay = backoff * Double(attempt)
try await Task.sleep(nanoseconds: UInt64(delay * 1_000_000_000))
continue
} else {
throw error
}
}
}
throw lastError!
}
}
3. Circuit Breaker Pattern
class CircuitBreaker {
enum State {
case closed // Normal operation
case open // Failing, reject requests
case halfOpen // Testing if service recovered
}
private var state: State = .closed
private var failureCount = 0
private let failureThreshold = 5
private let timeout: TimeInterval = 60
func execute<T>(
_ operation: () async throws -> T
) async throws -> T {
switch state {
case .open:
if shouldAttemptReset() {
state = .halfOpen
} else {
throw CircuitBreakerError.open
}
case .halfOpen, .closed:
break
}
do {
let result = try await operation()
onSuccess()
return result
} catch {
onFailure()
throw error
}
}
private func onSuccess() {
failureCount = 0
state = .closed
}
private func onFailure() {
failureCount += 1
if failureCount >= failureThreshold {
state = .open
}
}
}
๐ Scaling Considerations
For 50-200 Engineers:
| Component | Scale | Solution |
|---|---|---|
| API Requests/Day | 10K-50K | Rate limiting, request queuing |
| Concurrent Workflows | 50-200 | Task queue (Redis/RabbitMQ) |
| Storage | 100GB-1TB | Database for results, S3 for artifacts |
| Cost/Month | $500-$5K | Cost optimization, budget alerts |
Infrastructure:
# Infrastructure (Mid-scale)
services:
- agent-orchestrator:
instances: 3-5
resources: 2 CPU, 4GB RAM
- api-gateway:
instances: 2-3
resources: 1 CPU, 2GB RAM
- task-queue:
type: Redis
instances: 1 (cluster)
- database:
type: PostgreSQL
size: 100GB-1TB
- monitoring:
type: Prometheus + Grafana
๐ Security Considerations
1. API Key Management
class APIKeyManager {
// Store keys in secure vault (AWS Secrets Manager, HashiCorp Vault)
func getAPIKey(for service: AIServiceProvider) async throws -> String {
return try await secretsManager.getSecret(
name: "ai-service-\(service.name)-api-key"
)
}
}
2. Code Sanitization
class CodeSanitizer {
func sanitize(_ code: String) -> String {
// Remove sensitive data before sending to AI
return code
.removingAPIKeys()
.removingSecrets()
.removingPersonalInfo()
}
}
3. Access Control
class AccessController {
func canAccessWorkflow(
_ workflow: Workflow,
user: User
) -> Bool {
// Check user permissions
// Verify project access
// Validate workflow access
return user.hasPermission(.executeWorkflow) &&
user.hasProjectAccess(workflow.project)
}
}
๐ Monitoring & Observability
Key Metrics:
- Workflow Execution Time: P50, P95, P99
- API Success Rate: Per service
- Cost per Workflow: Track spending
- Agent Performance: Accuracy, usefulness
- Error Rates: By agent, by service
Dashboards:
struct Metrics {
// Workflow metrics
var workflowsExecuted: Int
var averageExecutionTime: TimeInterval
var successRate: Double
// Cost metrics
var dailySpend: Double
var costPerWorkflow: Double
var costByService: [String: Double]
// Quality metrics
var agentAccuracy: [String: Double]
var userSatisfaction: Double
}
๐ฏ Interview Discussion Points
What Interviewers Look For:
- System Thinking: Can you design a system that integrates multiple services?
- Cost Awareness: Do you consider budget constraints?
- Error Handling: How do you handle failures gracefully?
- Scalability: Can the system grow with the team?
- Security: How do you protect API keys and sensitive data?
- Trade-offs: What are the pros/cons of different approaches?
Key Points to Emphasize:
- โ Leveraging External Services: Donโt rebuild what exists
- โ Orchestration Layer: Coordinate multiple services effectively
- โ Cost Optimization: Smart model selection, caching, batching
- โ Resilience: Fallbacks, retries, circuit breakers
- โ Mid-Scale Focus: Appropriate complexity for team size
๐ Conclusion
This design shows how to build an AI agent orchestration system for a mid-scale mobile development team by:
- Integrating Multiple Services: Claude, OpenAI, Cursor, testing AI tools
- Agent-Based Architecture: Modular, scalable, fault-tolerant
- Workflow-Driven: YAML configurations, easy to modify
- Cost-Conscious: Smart model selection, caching, budgeting
- Resilient: Fallbacks, retries, circuit breakers
- No Custom UIs: Uses existing tools (GitHub, Slack, APIs)
Key Takeaway: For mid-scale companies, the value is in orchestration and integration, not building AI infrastructure from scratch. Focus on connecting existing services effectively.
This design is appropriate for companies with 50-200 engineers who want to leverage AI tools without building custom infrastructure. It balances functionality, cost, and complexity for mid-scale operations.
Share on
Twitter Facebook LinkedInโ Buy me a coffee! ๐
If you found this article helpful, consider buying me a coffee to support my work! ๐
